Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar.

J Hazard Mater

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. Electronic address:

Published: April 2018

A novel calcium-based magnetic biochar (Ca-MBC), made by pyrolyzing the mixture of rice straw, iron oxide (FeO) and calcium carbonate (CaCO), was developed in this study for remediation of co-pollution of arsenic and cadmium. Characteristics of the material showed that FeO and CaCO were adhered on the surface of biochar. The experiments on the effects of pH, adsorption kinetics and isotherm revealed that the Ca-MBC had a great ability to adsorb arsenic and cadmium within 0.5 h for cadmium and 12 h for arsenic with a maximum adsorption capacity of 6.34 and 10.07 mg g, respectively, and that the adsorption of both metals was pH-dependent from 2 to 12 with an optimal pH of pH 5. The mechanism of co-adsorption of Cd(II) and As(III) included both competitive and synergistic effects. The presence of As(III) enhanced Cd(II) adsorption by 3-16% while Cd(II) addition suppressed As(III) adsorption by 15-33%. The synergistic effects on As(III) and Cd(II) adsorption had resulted from the electrostatic interaction and the formation of type B ternary surface complexes. These new insights provide valuable information for the application of Ca-MBC as a potential adsorbent in treatment of water contaminated with As(III) and Cd(II).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.01.011DOI Listing

Publication Analysis

Top Keywords

asiii cdii
12
novel calcium-based
8
calcium-based magnetic
8
magnetic biochar
8
arsenic cadmium
8
synergistic effects
8
cdii adsorption
8
cdii
6
adsorption
6
asiii
5

Similar Publications

Rapid on-site determination of heavy metals and metalloids in contaminated biochar samples by accelerated leaching process coupled with voltammetric sensors.

Talanta

January 2025

Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:

Heavy metals and metalloids are the most common environmental pollutants. Toxicity characteristic leaching procedure (TCLP) is a standard operating procedure that is used to assess heavy metal and metalloid compositions, and evaluate the hazardous nature of waste and waste-derived materials for reuse or disposal, such as determining landfill suitability. However, TCLP and the following detections are time-consuming and require bulky laboratory-based instruments and trained personnel.

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF

Green synthesized nanoscale zero-valent iron impregnated tea residue biochar efficiently captures metal(loid)s for sustainable water remediation.

J Environ Manage

January 2025

Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea.

Pristine or modified nanoscale zero-valent iron (nZVI) synthesized though conventional chemical reduction have been widely recommended for remediating metal(loid)-contaminated water. However, their eco-friendliness is often challenged with the concomitant bio-toxicity and secondary environmental risks. Alternatively, this study utilized waste tea leaves extract and remaining residue as the reducing agent and pyrolytic matrix to innovatively fabricate a green synthesized nZVI impregnated tea residue biochar (G-nZVI/TB).

View Article and Find Full Text PDF

Sorption of metal ions onto PET-derived microplastic fibres.

Environ Sci Process Impacts

December 2024

School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.

Article Synopsis
  • This study explored how microplastic polyester fibers, specifically polyethylene terephthalate (PET), can absorb various metal ions found in sewage.
  • The research found that PET fibers could effectively retain metal ions like lead, cadmium, and mercury, with lead showing the highest absorption capacity.
  • The findings suggest that when these microplastics are present in sewage treatment, they can contribute to the transfer of hazardous metals into the environment, particularly when sewage sludge is used on agricultural land.
View Article and Find Full Text PDF

An iron-manganese sludge-derived amendment was proposed to remediate arsenic (As) and cadmium (Cd) co-contaminated soil, with a strong adsorptive capacity across pH 4 to 10. The Langmuir model defined maximum adsorption at 78.17 mg/g for As(III), 110.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!