Objectives: The purpose of this study was to estimate the state of tension (tone) and the biomechanical and viscoelastic properties of skeletal muscle in aging rats during the administration of different doses of dexamethasone and to find the relationships among the state of muscle atrophy, muscle strength, and the abovementioned muscle properties.

Methods: Muscle state of tension, biomechanical (elasticity, dynamic stiffness) and viscoelastic (mechanical stress relaxation time, Deborah number) properties (using MyotonPRO, Myoton Ltd, Tallinn, Estonia), lean body mass (BM), and hind limb grip strength were measured before and after the administration of a 10-day treatment with dexamethasone 100 μg/100 g BM (young and old group) and 50 μg/100 g BM (old group).

Results: Muscle elasticity (logarithmic decrement) was lower in old animals (1.86 ± 0.03) in comparison with young adult rats (1.38 ± 0.04) (P < .01). After the 10-day treatment with dexamethasone 100 μg/100 g BM, young adult rats had 10% lower muscle elasticity (P < .01). The same dose of dexamethasone in old rats increased tone (frequency of natural oscillation) from 29.13 ± 0.51 Hz to 38.50 ± 0.95 Hz (P < .001). There were dose-dependent differences in dynamic stiffness and tone of muscle; changes in elasticity were independent of the dose in old animals. In old rats, the muscle's viscoelastic properties decreased after dexamethasone administration. Significant correlation was found between changes in muscle logarithmic decrement and stiffness (r = 0.90; P < .05) in old animals.

Conclusions: Biomechanical and viscoelastic properties of skeletal muscle indicate changes in the main function of muscle during glucocorticoid-induced muscle atrophy and are in agreement with changes in hind limb strength. The myometric measurements indicate the direction and magnitude of change in muscle tissue after different doses of dexamethasone administration easily and quickly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmpt.2017.06.009DOI Listing

Publication Analysis

Top Keywords

viscoelastic properties
16
muscle
14
skeletal muscle
12
biomechanical viscoelastic
12
state tension
8
properties skeletal
8
doses dexamethasone
8
muscle atrophy
8
dynamic stiffness
8
hind limb
8

Similar Publications

Amniotic Fluid as a Potential Treatment for Vocal Fold Scar in a Rabbit Model.

J Voice

January 2025

Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.

Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.

Study Design: Randomized, controlled trial.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!