A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. | LitMetric

Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice.

J Exp Bot

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Published: March 2018

Plant architecture is a major target of rice (Oryza sativa) breeding and selection, but the underlying regulatory networks remain unclear. Here, we overexpressed an OsNAC2 mutant (OErN) that cannot be cleaved by the miRNA miR164b. OErN plants had better plant architecture and longer panicles, and produced more grains. The parental line averaged 12.2 primary and 31.5 secondary branches in the main panicles; two OErN lines averaged 15.0 and 15.2 primary, and 41.5 and 44.3 secondary branches. In large-scale field trials, OErN plants produced at least 58.62% more total grain (by weight) compared with the parental line. They also had more large and small vascular bundles in the stem internodes and leaves. Overexpression of miR164b or down-regulation of OsNAC2 led to decreased panicle length and grain yield in the main panicle. The OErN plants showed significant up-regulation of the grain number and plant architecture-related genes IPA1 and DEP1. A survey of >3000 rice varieties found no natural mutations in the miR164b-binding site of OsNAC2. OErN increased yield in Nipponbare and the commonly grown Yangyujing 3 cultivars. In summary, we identified an efficient new strategy to increase rice yield substantially and improve plant architecture through overexpression of OsmiR164b-resistant OsNAC2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888996PMC
http://dx.doi.org/10.1093/jxb/ery017DOI Listing

Publication Analysis

Top Keywords

plant architecture
16
oern plants
12
grain yield
8
secondary branches
8
oern
6
osnac2
5
plant
5
overexpression mir164b-resistant
4
mir164b-resistant osnac2
4
osnac2 improves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!