Adsorption of bovine serum albumin (BSA) on poly(vinylidene fluoride) (PVDF) surfaces in an aqueous environment was investigated in the presence and absence of excess ions using molecular dynamics simulations. The adsorption process involved diffusion of protein to the surface and dehydration of surface-protein interactions, followed by adsorption and denaturation. Although adsorption of BSA on PVDF surface was observed in the absence of excess ions, denaturation of BSA was not observed during the simulation (1 μs). Basic and acidic amino acids of BSA were found to be directly interacting with PVDF surface. Simulation in a 0.1 M NaCl solution showed delayed adsorption of BSA on PVDF surfaces in the presence of excess ions, with BSA not observed in close proximity to PVDF surface within 700 ns. Adsorption of Cl on PVDF surface increased its negative charge, which repelled negatively charged BSA, thereby delaying the adsorption process. These results will be helpful for understanding membrane fouling phenomena in polymeric membranes, and fundamental advancements in these areas will lead to a new generation of membrane materials with improved antifouling properties and reduced energy demands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b10221DOI Listing

Publication Analysis

Top Keywords

pvdf surface
16
excess ions
12
adsorption
8
adsorption bovine
8
bovine serum
8
serum albumin
8
polyvinylidene fluoride
8
surfaces presence
8
ions molecular
8
molecular dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!