A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precisely Tailoring Upconversion Dynamics via Energy Migration in Core-Shell Nanostructures. | LitMetric

Precisely Tailoring Upconversion Dynamics via Energy Migration in Core-Shell Nanostructures.

Angew Chem Int Ed Engl

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.

Published: March 2018

Upconversion emission dynamics have long been believed to be determined by the activator and its interaction with neighboring sensitizers. Herein this assumption is, however, shown to be invalid for nanostructures. We demonstrate that excitation energy migration greatly affects upconversion emission dynamics. "Dopant ions' spatial separation" nanostructures are designed as model systems and the intimate link between the random nature of energy migration and upconversion emission time behavior is unraveled by theoretical modelling and confirmed spectroscopically. Based on this new fundamental insight, we have successfully realized fine control of upconversion emission time behavior (either rise or decay process) by tuning the energy migration paths in various specifically designed nanostructures. This result is significant for applications of this type of materials in super resolution spectroscopy, high-density data storage, anti-counterfeiting, and biological imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887923PMC
http://dx.doi.org/10.1002/anie.201711606DOI Listing

Publication Analysis

Top Keywords

energy migration
16
upconversion emission
16
emission dynamics
8
emission time
8
time behavior
8
upconversion
5
precisely tailoring
4
tailoring upconversion
4
upconversion dynamics
4
energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!