Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Zearalenone (ZEA) is an estrogenic mycotoxin produced by several Fusarium species and frequently contaminates cereals used for food or animal feed. This study attempted to select lactic acid bacteria (LAB) with high esterase activity from the digestive tract, with the goal of using these bacteria for ZEA detoxification.
Results: No ZEA activity-related biotransformation products were observed in three isolates (B1, B2 and D10) during incubation in the presence of ZEA. All three LAB strains were Lactobacillus plantarum, but the API 50 CHL results suggested that the three isolates were different strains. Increased esterase activity was associated with an increase in cell growth, and the ZEA-detoxifying capabilities of isolates rely on the concentration of bacteria in the culture medium. The lipolytic activity and ZEA removal assay indicated that ZEA degradation by the supernatant fraction was dependent on esterase activity; the supernatant of B2 strain showed the highest ZEA degradation ability and did not release the binding ZEA back into the medium. The D10 strain showed fast ZEA binding ability during the late log phase but began to release the bound ZEA back into the medium after the early stationary phase. All isolates showed good acid and bile salt tolerance ability but all strains showed low adhesion ability to epithelial cells.
Conclusion: Based on the ZEA removal characterization and ability of the isolates, it is suggested that the isolates could be applied to ZEA detoxification of contaminated feed, but the with the requirement of high cell number for ZEA binding and limited degradation time before absorption of ZEA in the digestive tract. © 2018 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.8904 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!