Soluble N-ethylmaleimide sensitive fusion protein (NSF) attachment protein receptor (SNARE) proteins are key for membrane trafficking, as they catalyze membrane fusion within eukaryotic cells. The SNARE protein family consists of about 36 different members. Specific intracellular transport routes are catalyzed by specific sets of 3 or 4 SNARE proteins that thereby contribute to the specificity and fidelity of membrane trafficking. However, studying the precise function of SNARE proteins is technically challenging, because SNAREs are highly abundant and functionally redundant, with most SNAREs having multiple and overlapping functions. In this protocol, a new method for the visualization of SNARE complex formation in live cells is described. This method is based on expressing SNARE proteins C-terminally fused to fluorescent proteins and measuring their interaction by Förster resonance energy transfer (FRET) employing fluorescence lifetime imaging microscopy (FLIM). By fitting the fluorescence lifetime histograms with a multicomponent decay model, FRET-FLIM allows (semi-)quantitative estimation of the fraction of the SNARE complex formation at different vesicles. This protocol has been successfully applied to visualize SNARE complex formation at the plasma membrane and at endosomal compartments in mammalian cell lines and primary immune cells, and can be readily extended to study SNARE functions at other organelles in animal, plant, and fungal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908401PMC
http://dx.doi.org/10.3791/56745DOI Listing

Publication Analysis

Top Keywords

snare proteins
16
fluorescence lifetime
12
snare complex
12
complex formation
12
snare
10
lifetime imaging
8
imaging microscopy
8
membrane trafficking
8
proteins
5
visualizing intracellular
4

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!