Oriented composite nanofibers consisting of porous silicon nanoparticles (pSiNPs) embedded in a polycaprolactone or poly(lactide-co-glycolide) matrix are prepared by spray nebulization from chloroform solutions using an airbrush. The nanofibers can be oriented by an appropriate positioning of the airbrush nozzle, and they can direct growth of neurites from rat dorsal root ganglion neurons. When loaded with the model protein lysozyme, the pSiNPs allow the generation of nanofiber scaffolds that carry and deliver the protein under physiologic conditions (phosphate-buffered saline (PBS), at 37 °C) for up to 60 d, retaining 75% of the enzymatic activity over this time period. The mass loading of protein in the pSiNPs is 36%, and in the resulting polymer/pSiNP scaffolds it is 3.6%. The use of pSiNPs that display intrinsic photoluminescence (from the quantum-confined Si nanostructure) allows the polymer/pSiNP composites to be definitively identified and tracked by time-gated photoluminescence imaging. The remarkable ability of the pSiNPs to protect the protein payload from denaturation, both during processing and for the duration of the long-term aqueous release study, establishes a model for the generation of biodegradable nanofiber scaffolds that can load and deliver sensitive biologics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475500PMC
http://dx.doi.org/10.1002/adma.201706785DOI Listing

Publication Analysis

Top Keywords

porous silicon
8
spray nebulization
8
nanofiber scaffolds
8
psinps
5
oriented nanofibrous
4
nanofibrous polymer
4
scaffolds
4
polymer scaffolds
4
scaffolds protein-loaded
4
protein-loaded porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!