Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (), the endosperm takes on a characteristic dark-brown appearance. In this study, we use an integrated metabolomic and transcriptomic approach combined with functional validation to elucidate the key metabolites responsible for the dark-brown phenotype. Importantly, we found that serotonin biosynthesis was elevated dramatically and closely linked with dark-brown endosperm color in HFL rice. A functional connection between serotonin and endosperm color was confirmed via overexpression of TDC3, a key enzyme of serotonin biosynthesis. Furthermore, we show that both the jasmonate signaling pathway and expression were strongly induced in the late stage of endosperm development of HFL rice, coinciding with serotonin accumulation and dark-brown pigmentation. We propose a model for the metabolic connection between Lys and serotonin metabolism in which elevated 2-aminoadipate from Lys catabolism may play a key role in the connection between the jasmonate signaling pathway, serotonin accumulation, and the brown phenotype in rice endosperm. Our data provide a deeper understanding of amino acid metabolism in rice. In addition, the finding that both Lys and serotonin accumulate in HFL rice grains should promote efforts to create a nutritionally favorable crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841688 | PMC |
http://dx.doi.org/10.1104/pp.17.01283 | DOI Listing |
Nutr Res
January 2024
State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Plant Molecular Biology and Agriculture Biotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown.
View Article and Find Full Text PDFPlant Physiol
March 2018
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (), the endosperm takes on a characteristic dark-brown appearance.
View Article and Find Full Text PDFSci Rep
May 2017
State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
Rice is an excellent source of protein, and has an adequate balance of amino acids with the exception of the essential amino acid lysine. By using a combined enhancement of lysine synthesis and suppression of its catabolism, we had produced two transgenic rice lines HFL1 and HFL2 (High Free Lysine) containing high concentration of free lysine. In this study, a 70-day rat feeding study was conducted to assess the nutritional value of two transgenic lines as compared with either their wild type (WT) or the WT rice supplemented with different concentrations of L-lysine.
View Article and Find Full Text PDFJ Exp Bot
July 2016
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity.
View Article and Find Full Text PDFPLoS One
February 2016
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China.
The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!