Demonstration of GlcNAc transferase I in plants.

Biochem Biophys Res Commun

Published: February 1986

A solubilized enzyme preparation from mung bean seedlings catalyzed the transfer of GlcNAc from UDP-GlcNAc to the Man5GlcNAc acceptor to form GlcNAc-Man5GlcNAc. In the presence of the mannosidase inhibitor, swainsonine, this oligosaccharide accumulated, but in the absence of this inhibitor, the oligosaccharide was processed further to smaller sized oligosaccharides with the release of radioactive mannose. The formation of GlcNAc-Man5GlcNAc required the presence of Man5GlcNAc, UDP-GlcNAc, Mn++ and swainsonine. The product, GlcNAc-Man5GlcNAc was characterized by chromatography on calibrated columns of Biogel P-4, and by various enzymatic digestions. These data indicate the presence of GlcNAc transferase I and mannosidase II in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(86)90404-3DOI Listing

Publication Analysis

Top Keywords

glcnac transferase
8
demonstration glcnac
4
transferase plants
4
plants solubilized
4
solubilized enzyme
4
enzyme preparation
4
preparation mung
4
mung bean
4
bean seedlings
4
seedlings catalyzed
4

Similar Publications

O-GlcNAcylation of DJ-1 suppresses ferroptosis in renal cell carcinoma by affecting the transsulfuration pathway.

Int Immunopharmacol

January 2025

Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China. Electronic address:

Renal cell carcinoma (RCC) is one of the most common urological malignancies worldwide, and advanced patients often face challenges with chemotherapy resistance and poor prognosis. Ferroptosis, a novel form of cell death, offers potential therapeutic prospects. In this study, we found that DJ-1 was elevated in kidney renal clear cell carcinoma (KIRC), and this abnormal expression pattern was closely associated with clinical pathological characteristics and worse prognosis.

View Article and Find Full Text PDF

Tris (2-chloroethyl) phosphate (TCEP), recognized as an emerging pollutant, has been frequently detected in human blood. Maintenance of blood homeostasis is indispensable for regulating various physiological states and overall health, yet hematological toxicology of TCEP has not been extensively investigated. Platelets, a vital component of blood, are fundamental in the processes of hemostasis and thrombosis through their activation; thus, this study was designed to elucidate the effects and underlying mechanisms of TCEP on platelet activation.

View Article and Find Full Text PDF

O-GlcNAc glycans in the mammalian extracellular environment.

Carbohydr Res

March 2025

Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan. Electronic address:

Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins.

View Article and Find Full Text PDF

High Glucose Inhibits O-GlcNAc Transferase Translocation in Early Osteoblast Differentiation by Altering Protein Phosphatase 2A Activity.

J Cell Physiol

January 2025

Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.

View Article and Find Full Text PDF

Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo.

PLoS Genet

January 2025

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.

The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!