Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wilson disease is an autosomal recessive genetic disorder caused by loss-of-function mutations in the P-type copper ATPase, ATP7B, which leads to toxic accumulation of copper mainly in the liver and brain. Wilson disease is treatable, primarily by copper-chelation therapy, which promotes copper excretion. Although several de-coppering drugs are currently available, their Cu(I)-binding affinities have not been quantitatively characterized. Here we determined the Cu(I)-binding affinities of five major de-coppering drugs - D-penicillamine, trientine, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinate and tetrathiomolybdate - by exploring their ability to extract Cu(I) ions from two Cu(I)-binding proteins, the copper chaperone for cytochrome c oxidase, Cox17, and metallothionein. We report that the Cu(I)-binding affinity of these drugs varies by four orders of magnitude and correlates positively with the number of sulfur atoms in the drug molecule and negatively with the number of atoms separating two SH groups. Based on the analysis of structure-activity relationship and determined Cu(I)-binding affinity, we hypothesize that the endogenous biologically active substance, α-lipoic acid, may be suitable for the treatment of Wilson disease. Our hypothesis is supported by cell culture experiments where α-lipoic acid protected hepatic cells from copper toxicity. These results provide a basis for elaboration of new generation drugs that may provide better therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780470 | PMC |
http://dx.doi.org/10.1038/s41598-018-19873-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!