Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels.

Nat Commun

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.

Published: January 2018

The design of monomer sequences in polymers has been a challenging research subject, especially in making vinyl copolymers by free-radical polymerization. Here, we report a strategy to obtain sequence-regulated vinyl copolymers, utilizing the periodic structure of a porous coordination polymer (PCP) as a template. Mixing of Cu ion and styrene-3,5-dicarboxylic acid (S) produces a PCP, [Cu(styrene-3,5-dicarboxylate)] , with the styryl groups periodically immobilized along the one-dimensional channels. After the introduction of acrylonitrile (A) into the host PCP, radical copolymerization between A and the immobilized S is performed inside the channel, followed by decomposing the PCP to isolate the resulting copolymer. The predominant repetitive SAAA sequence in the copolymer is confirmed by monomer composition, NMR spectroscopy and theoretical calculations. Copolymerization using methyl vinyl ketone also provides the same type of sequence-regulated copolymer, showing that this methodology has a versatility to control the copolymer sequence via transcription of PCP periodicity at the molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780473PMC
http://dx.doi.org/10.1038/s41467-017-02736-1DOI Listing

Publication Analysis

Top Keywords

vinyl copolymers
8
pcp
5
sequence-regulated copolymerization
4
copolymerization based
4
based periodic
4
periodic covalent
4
covalent positioning
4
positioning monomers
4
monomers one-dimensional
4
one-dimensional nanochannels
4

Similar Publications

Modification of Processability and Shear-Induced Crystallization of Poly(lactic acid).

Polymers (Basel)

December 2024

Japan Advanced Institute of Science and Technology, Graduated School of Advanced Science and Technology, Asahidai, Nomi 923-1292, Ishikawa, Japan.

We studied the rheological properties under both shear and elongational flow and crystallization behaviors after shear history for binary blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate copolymer (EVA) with a slightly lower shear viscosity. EVA was immiscible with PLA and dispersed in droplets in the blend. The addition of EVA significantly reduced the shear viscosity, which is attributed to the interfacial slippage between PLA and EVA.

View Article and Find Full Text PDF

Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.

View Article and Find Full Text PDF

Rhodixan A1 is the trade name for -ethyl -(1-methoxycarbonylethyl)dithiocarbonate, a RAFT/MADIX agent used by Syensqo to produce block copolymer additives for aqueous formulations on an industrial scale. Chain transfer coefficients to Rhodixan A1 determined for 25 different styrenic, acrylate, and acrylamide monomers were relatively low (0.6 < C < 3.

View Article and Find Full Text PDF

Block Architectures in 2D Polymer Networks Fabricated via Sequential Copolymerization in a Metal-Organic Framework.

Chemistry

December 2024

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments.

View Article and Find Full Text PDF

Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!