The intra-varietal genetic diversity of grapevine (Vitis vinifera L.) may be exploited to maintain grape quality under future warm conditions, which may alter grape berry development and composition. The present study assesses the effects of elevated temperature on the development of berry, grape composition and anthocyanins:sugars ratio of thirteen clones of V. vinifera. cv. Tempranillo that differed in length of the ripening period (time from veraison to berry total soluble solids, mainly sugars, of ca. 22 °Brix). Two temperature regimes (24 °C/14 °C or 28 °C/18 °C, day/night) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Elevated temperature hastened berry development, with a greater influence before the onset of ripening, and reduced anthocyanin concentration, colour intensity and titratable acidity. The clones significantly differed in the number of days that elapsed between fruit set and maturity. At the same concentration of total soluble solids, the anthocyanin concentration was lower at 28 °C/18 °C than 24 °C/14 °C, indicating a decoupling effect of elevated temperature during berry ripening. Thermal decoupling was explained by changes in the relative rate of response of anthocyanin and sugar build-up, rather than delayed onset of anthocyanin accumulation. Clones differed in the degree of thermal decoupling, but it was directly associated with differences neither in the length of their ripening period nor in plant vigour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2017.11.009 | DOI Listing |
Sci Rep
December 2024
Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFSci Rep
December 2024
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, 11944, USA.
For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.
The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Nanjing, China.
Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!