Available tools to analyze sequencing data coming from DNA-encoded chemical libraries (DELs) are often limited to in-house methods, which usually rely on strictly looking for the particular DEL structure used. Current methods do not take into account technological errors, such as library codification and sequencing errors, when detecting the sequences. The vast amount of data produced by next-generation sequencing of DEL screens is usually enough to extract the minimum information needed for compound identification. Here, we report a methodology to deconvolute encoding oligonucleotides, thus optimizing the sequencing power regardless of the library size, design complexity, or sequencing technology chosen. tagFinder is a highly flexible tool for fast tag detection and thorough DEL results characterization, which requires minimal hardware resources, scales linearly, and does not introduce any analytical error. The methodology can even deal with sequencing errors and PCR duplicates on single- or double-stranded DNA, enhancing the analytical detection and quantification of molecules and the informativeness of the entire process. Source code is available at https://github.com/jamigo/tagFinder .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/2472555217753840 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
Synthesis of chemically diverse heterocyclic scaffolds in DNA-encoded libraries is highly demanded. We herein reported a convenient one-pot multi-component on-DNA synthetic strategy to afford multi-substituted 2,3-dihydrofuran scaffolds pyridinium ylide-mediated cyclization. This reaction exhibited modest to excellent conversions for a broad range of DNA-conjugated aldehydes, β-ketonitriles and pyridinium salts under mild reaction conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
Based on their ability to canvas vast genetic or chemical space at low cost and high speed, DNA-encoded libraries (DEL) have served to enable both genomic and small molecule discovery. Current DEL chemical library screening approaches focus primarily on target-based affinity or activity. Here we describe an approach to record the phenotype-based activity of DNA-encoded small molecules on their cognate barcode in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!