Adenosine and adenosine triphosphate are involved in purinergic signaling which plays an important role in control of the immune system. Much data have been obtained regarding impact of purinergic signaling on dendritic cells, macrophages, monocytes and T lymphocytes, however less attention has been paid to purinergic regulation of B cells. This review summarizes present knowledge on ATP- and Ado-dependent signaling in B lymphocytes. Human B cells have been shown to express A-AR, A-AR, A-AR and A-AR and each subtype of P2 receptors. Surface of B cells exhibits two antagonistic ectoenzymatic pathways, one relies on constitutive secretion and resynthesis of ATP, while the second one depends on degradation of adenosine nucleotides to nucleosides and their subsequent degradation. Inactivated B cells remain under the suppressive impact of autocrine and paracrine Ado, whereas activated B lymphocytes increase ATP release and production. ATP protects B cells from Ado-induced suppression and exerts pro-inflammatory effect on the target tissues, and it is also involved in the IgM release. On the other hand, Ado synthesis is necessary for optimal development, implantation and maintenance of the plasmocyte population in bone marrow in the course of the primary immune response. Moreover, Ado plays an important role in immunoglobulin class switching, which is a key mechanism of humoral immune response. Disruption of purinergic signaling leads to severe disorders. Impairment of Ado metabolism is one of the factors responsible for common variable immunodeficiency. There are several lines of evidence that dysfunction of the immune system observed during diabetes may in part depend on disrupted ATP and Ado metabolism in the B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18388/abp.2017_1588 | DOI Listing |
Annu Rev Biomed Eng
January 2025
2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:
Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China.
This study evaluates the therapeutic impact of Fructus aurantii (FA) stir-baked with tartary buckwheat bran (TBB) on functional dyspepsia (FD), employing a reserpine at the dose of 5 mg/kg to rats. FA, a traditional Chinese herbal medicine, is processed with TBB to enhance its gastrointestinal motility benefits. The study's objectives were to assess the impact of this preparation on intestinal flora, SCFA levels, and metabolomic profiles in FD.
View Article and Find Full Text PDFUnlabelled: Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS ( NCT03109288 ) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA).
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFChem Senses
January 2025
Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO.
Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!