This study evaluated the effects of dietary substitution of fishmeal by graded levels of a blend composed of Aspergillus oryzae fermented rapeseed meal [0% (RM0), 25% (RM25), 50% (RM50), 75% (RM75) and 100% (RM100)] on growth performance, haemato-immunological responses and antioxidative status of Pagrus major (average weight 5.5 ± 0.02 g). After 56 days, growth performances were significantly improved in fish fed RM25 diet compared to control (P < 0.05). Meanwhile, up to 50% replacement of fishmeal did not affect growth performance, feed conversion efficiency, protein efficiency ratio, protein apparent digestibility, protease activity, fish somatic indices and survival compared to control. While blood hematocrit and plasma protein were significantly enhanced in groups fed RM0 and RM25 diets, most of the hematological parameters did not change through the trial except glutamic pyruvate transaminase which was significantly increased in RM75 and RM100 groups and blood cholesterol which was gradually decreased with the increasing level of the blend. Interestingly, feeding fish with RM25 and RM50 diets significantly showed enhanced lysozyme, bactericidal and peroxidase activities and fish fed the same diets showed high resistance against oxidative stress (biological antioxidant potential and reactive oxygen metabolites). Additionally, catalase activity and tolerance against low salinity seawater were higher in fish fed RM25 diet. These findings suggested that, at a moderate level (25% and 50%), substitution of fishmeal by the fermented rapeseed meal promoted growth, nutrient utilization, and exerted immune responses and anti-oxidative effects in red sea bream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.01.032DOI Listing

Publication Analysis

Top Keywords

growth performance
8
pagrus major
8
aspergillus oryzae
8
oryzae fermented
8
fermented rapeseed
8
rapeseed meal
8
performance blood
4
blood health
4
health antioxidant
4
antioxidant status
4

Similar Publications

Objectives: Tinea capitis remains a common fungal infection in children worldwide. Species identification is critical for determining the source of infection and reducing transmission. In conventional methods, macro- and microscopic analysis is time-consuming and results in slow fungal growth or low specificity.

View Article and Find Full Text PDF

Food leftovers can be used as alternative feed ingredients for monogastric to replace human-competing feedstuffs, such as cereals, recycle a waste product, reduce the feed-food competition and keep nutrients and energy in the feed-food chain. Among food leftovers, former food products (FFPs) are no more intended for human but still suitable for animal consumption. However, the metabolic impact of FFP has never been investigated.

View Article and Find Full Text PDF

Background: Osteocalcin is a metabolic active hormone, which correlates positively with bone formation and inversely with body mass index and waist circumference in adults.

Objectives: To investigate whether osteocalcin in infancy and early childhood were related to childhood growth or body composition.

Methods: A Swedish longitudinal birth cohort with blood samples from 551 children from birth until 5 years of age.

View Article and Find Full Text PDF

Atmospheric Pressure Alkaline Etching of MFI Zeolite Under Mild Temperature Toward Hollow Microstructure and Ultralow k Film.

Small Methods

December 2024

Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.

Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.

View Article and Find Full Text PDF

Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!