Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.

Nano Lett

Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.

Published: February 2018

Designing high-quality interfaces is crucial for high-performance photoelectrochemical (PEC) water-splitting devices. Here, we demonstrate a facile integration between polycrystalline np-Si and NiFe-layered double hydroxide (LDH) nanosheet array by a partially activated Ni (Ni/NiO) bridging layer for the excellent PEC water oxidation. In this model system, the thermally deposited Ni interlayer protects Si against corrosion and makes good contact with Si, and NiO has a high capacity of hole accumulation and strong bonding with the electrodeposited NiFe-LDH due to the similarity in material composition and structure, facilitating transfer of accumulated holes to the catalyst. In addition, the back illumination configuration makes NiFe-LDH sufficiently thick for more catalytically active sites without compromising Si light absorption. This earth-abundant multicomponent photoanode affords the PEC performance with an onset potential of ∼0.78 V versus reversible hydrogen electrode (RHE), a photocurrent density of ∼37 mA cm at 1.23 V versus RHE, and retains good stability in 1.0 M KOH, the highest water oxidation activity so far reported for the crystalline Si-based photoanodes. This bridging layer strategy is efficient and simple to smooth charge transfer and make robust contact at the semiconductor/electrocatalyst interface in the solar water-splitting systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b05314DOI Listing

Publication Analysis

Top Keywords

bridging layer
12
facile integration
8
water oxidation
8
integration catalyst
4
catalyst high-performance
4
high-performance photoanodes
4
photoanodes multifunctional
4
multifunctional bridging
4
layer designing
4
designing high-quality
4

Similar Publications

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Instable Microdeformation and Strain Recovery in Amorphous LiPON Thin Layer.

ACS Omega

December 2024

HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.

Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms.

View Article and Find Full Text PDF

MAX (MAX) phases are a novel class of materials with a closely packed hexagonal structure that bridge the gap between metals and ceramics, garnering tremendous research interest worldwide in recent years. Benefiting from their unique layered structure and mixed covalent-ionic-metallic bonding characteristics, MAX phase coatings possess excellent oxidation resistance, and exceptional electrical and thermal conductivities, making them highly promising for applications in advanced nuclear materials, battery plate protection materials, and aero-engine functional materials. This review aims to provide a comprehensive understanding of MAX phase coatings.

View Article and Find Full Text PDF

Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.

Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.

View Article and Find Full Text PDF

Background: This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars.

Methods: A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!