Here we study the Jahn-Teller (JT) effect on framework flexibility of two analogous hybrid organic-inorganic perovskites, [C(NH)][Zn(HCOO)] (1-Zn) and [C(NH)][Cu(HCOO)] (2-Cu). Single-crystal nanoindentation measurements show that the elastic moduli and hardnesses of 1-Zn are up to ∼52.0% and ∼25.0% greater than those of the JT active 2-Cu. Temperature-dependent X-ray diffraction measurements indicate that the thermal expansion along the b-axis is switched from negative to positive by replacing Zn with Cu on the B-site. These stark distinctions in framework flexibility are primarily attributed to the ∼10.0% elongation of Cu-O bonds induced by the JT effect and associated alterations in octahedral tilting and hydrogen-bonding. Our results demonstrate the prominence of the JT effect in the emerging hybrid perovskites and highlight the possibilities of tuning materials' properties using orbital order.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b03229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!