Here, we have exploited the heightened extracellular concentration of matrix metalloproteinase-9 (MMP-9) to induce surface-conversional properties of nanogels with the aim of tumor-specific enhanced cellular uptake. A modular polymeric nanogel platform was designed and synthesized for facile formulation and validation of MMP-9-mediated dePEGylation and generation of polyamine-type surface characteristics through peptide N-termini. Nanogels containing MMP-9-cleavable motifs and different poly(ethylene glycol) corona lengths (350 and 750 g/mol) were prepared, and enzymatic surface conversional properties were validated by MALDI characterization of cleaved byproducts, fluorescamine assay amine quantification, and zeta potential. The nanogel with a shorter PEG length, mPEG350-NG, exhibited superior surface conversion in response to extracellular concentrations of MMP-9 compared to that of the longer PEG length, mPEG750-NG. Confocal microscopy images of HeLa cells incubated with both fluorescein-labeled nanogels and DiI-encapsulated nanogels demonstrated greater uptake following MMP-9 "activation" for mPEG350-NG compared to its nontreated "passive" mPEG350-NG parent, demonstrating the versatility of such systems to achieve stimuli-responsive uptake in response to cancer-relevant proteases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298948PMC
http://dx.doi.org/10.1021/acs.biomac.7b01659DOI Listing

Publication Analysis

Top Keywords

surface conversion
8
cellular uptake
8
peg length
8
nanogels
5
matrix metalloproteinase-9-responsive
4
metalloproteinase-9-responsive nanogels
4
nanogels proximal
4
surface
4
proximal surface
4
conversion activated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!