We prepared TiO2 nanotubes (NT) on commercially pure titanium (cp-Ti) substrate by plasma electrolyte oxidation and adapted magnetron sputtering for incorporation of Ag-nanoparticles (Ag-NPs) onto the nanotubes (Ag-NPs/TiO2 nanotube). Power input to the Ag target per unit time was varied (5, 10, 15 W/cm2) to fabricate different shapes of Agnanoparticles onto the nanotubes while net energy input was fixed by maintaining a constant total sputter time (30, 15, 10 s, respectively). For investigation of experimental samples' characteristics, FE-SEM, TEM, EDS, XRD, XPS, SPM analysis and contact angles measurement was carried out. Through these characterization, plasma engineered Ag-NPs was successfully formed on/in the entire nanotube structure. In terms of antibacterial ability, plasma engineered Ag-NPs/TiO2 nanotubes samples significantly reduced S. aureus colony numbers compared with control. Also, simulated body fluid immersion tests with hydroxyapatite showed ion precipitation onto the surface of all experimental groups, confirmed by XRD and EDS analysis. However, plasma engineered Ag-NPs/TiO2 nanotubes groups were not cytotoxic. Furthermore, MC3T3-E1 cells were cultured on Ag-NPs/TiO2 nanotubes groups to evaluate the effect of nanostructured surface on cell functionality such as a cell proliferation and ALP activity. Ag-NPs/TiO2 nanotubes have both biocompatible and antibacterial characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2310DOI Listing

Publication Analysis

Top Keywords

ag-nps/tio2 nanotubes
16
plasma engineered
12
engineered ag-nps/tio2
8
nanotubes groups
8
nanotubes
7
ag-nps/tio2
5
long-term antibacterial
4
antibacterial performance
4
performance bioactivity
4
bioactivity plasma-engineered
4

Similar Publications

Synthesis and Characterization of TiO Nanotubes (TiO-NTs) with Ag Silver Nanoparticles (Ag-NPs): Photocatalytic Performance for Wastewater Treatment under Visible Light.

Materials (Basel)

February 2022

École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Universite de Rennes, F-35000 Rennes, France.

In this work, we present the influence of the decoration of TiO nanotubes (TiO-NTs) with Ag silver nanoparticles (Ag-NPs) on the photocatalysis of emerging pollutants such as the antibiotic diclofenac sodium. The Ag-NPs were loaded onto the TiO-NTs by the anodization of metallic titanium foils. Diclofenac sodium is an emerging pollutant target of the pharmaceutical industry because of its negative environmental impact (high toxicity and confirmed carcinogenicity).

View Article and Find Full Text PDF

We prepared TiO2 nanotubes (NT) on commercially pure titanium (cp-Ti) substrate by plasma electrolyte oxidation and adapted magnetron sputtering for incorporation of Ag-nanoparticles (Ag-NPs) onto the nanotubes (Ag-NPs/TiO2 nanotube). Power input to the Ag target per unit time was varied (5, 10, 15 W/cm2) to fabricate different shapes of Agnanoparticles onto the nanotubes while net energy input was fixed by maintaining a constant total sputter time (30, 15, 10 s, respectively). For investigation of experimental samples' characteristics, FE-SEM, TEM, EDS, XRD, XPS, SPM analysis and contact angles measurement was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!