Magnesium (Mg) alloys are considered promising materials for biodegradable medical devices; however, the initial effects and distribution of released Mg ions following implantation are unclear. This is addressed in the present study, using two types of Mg alloys implanted into rats. An in vitro immersion test was first carried out to quantify Mg ions released from the alloys at early stages. Based on these data, we performed an in vivo experiment in which large amounts of alloys were subcutaneously implanted into the backs of rats for 1, 5, 10, and 25 h. Mg accumulation in organs was measured by inductively coupled plasma mass spectrometry. In vivo, blood and urine Mg concentrations were higher in rats receiving the implants than in controls after 1 h; however, the levels were within clinically accepted guidelines. The Mg concentration in bone was significantly higher in the 25 h implanted group than in the other groups. Our results suggest that homeostasis is maintained by urinary excretion and bone accumulation of released Mg ions in response to sudden changes in Mg ion concentration in the body fluid in a large number of Mg alloy implants at the early stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/aaa9d5 | DOI Listing |
Sci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFChemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Applied Electrochemistry, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy.
Magnetic resonance imaging (MRI) is a technique that employs strong magnetic fields and radio frequencies to generate detailed images of the body's interior. In oncology patients, gadolinium-based contrast agents (GBCAs) are frequently administered to enhance the visualization of tumors. Those contrast agents are gadolinium chelates, characterized by high stability that prevents the release of the toxic gadolinium ion into the body.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan.
This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!