Animals are routinely colonized by microorganisms. Despite many studies documenting the microbial taxa associated with animals, the pattern and ecological determinants of among-animal variation in microbial communities are poorly understood. This study quantified the bacterial communities associated with natural populations of Drosophila melanogaster. Across five collections, each fly bore 16-78 OTUs, predominantly of the Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae. Positive relationships, mostly among related OTUs, dominated both the significant co-occurrences and co-association networks among bacteria, and OTUs with important network positions were generally of intermediate abundance and prevalence. The prevalence of most OTUs was well predicted by a neutral model suggesting that ecological drift and passive dispersal contribute significantly to microbiome composition. However, some Acetobacteraceae and Lactobacillaceae were present in more flies than predicted, indicative of superior among-fly dispersal. These taxa may be well-adapted to the Drosophila habitat from the perspective of dispersal as the principal benefit of the association to the microbial partners. Taken together, these patterns indicate that both stochastic processes and deterministic processes relating to the differential capacity for persistence in the host habitat and transmission between hosts contribute to bacterial community assembly in Drosophila melanogaster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864213 | PMC |
http://dx.doi.org/10.1038/s41396-017-0020-x | DOI Listing |
Unlabelled: The use of microcomputed tomography (Micro-CT) for imaging biological samples has burgeoned in the past decade, due to increased access to scanning platforms, ease of operation, isotropic three-dimensional image information, and the ability to derive accurate quantitative data. However, manual data analysis of Micro-CT images can be laborious and time intensive. Deep learning offers the ability to streamline this process, but historically has included caveats-namely, the need for a large amount of training data, which is often limited in many Micro-CT studies.
View Article and Find Full Text PDFGut microbiota are fundamental for healthy animal function, but the evidence that host function can be predicted from microbiota taxonomy remains equivocal, and natural populations remain understudied compared to laboratory animals. Paired analyses of covariation in microbiota and host parameters are powerful approaches to characterise host-microbiome relationships mechanistically, especially in wild populations of animals that are also lab models, enabling insight into the ecological basis of host function at molecular and cellular levels. The fruitfly is a preeminent model organism, amenable to field investigation by 'omic analyses.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection.
View Article and Find Full Text PDFNat Commun
January 2025
The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 585018, Karnataka, India.
The current investigation intended to assess the controlled delivery of 7-sulfonamide-2-(4-methylphenyl) imidazo[2,1-b] [1, 3] benzothiazole an anticancer agent (ACA) by tamarind seed gum-based hydrogel; for its potential activity against hepatocellular carcinoma. The FTIR spectra, SEM, C NMR, PXRD, and TGA analyses evidenced the successful loading of ACA into the hydrogel system. The rheological testing conveyed the increase in the elastic nature of ACA-loaded hydrogel helping in an effective release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!