Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the pluripotency marker gene and global transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846143 | PMC |
http://dx.doi.org/10.1074/jbc.RA117.001150 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.
View Article and Find Full Text PDFClin Dysmorphol
January 2025
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.
View Article and Find Full Text PDFPeerJ
January 2025
Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Laboratório de Genética e Evolução Molecular, Vitória, Espírito Santo, Brazil.
Sea turtles are highly migratory and predominantly inhabit oceanic environments, which poses significant challenges to the study of their life cycles. Research has traditionally focused on nesting females, utilizing nest counts and mark-recapture methods, while male behavior remains understudied. To address this gap, previous studies have analyzed the genotypes of females and hatchlings to indirectly infer male genotypes and evaluate the extent of multiple paternity within populations.
View Article and Find Full Text PDFExpert Rev Mol Diagn
January 2025
Department of Pathology, Yale University School of Medicine, New Haven.
Introduction: Gestational trophoblastic disease (GTD) encompasses a constellation of rare to common gynecologic conditions stemming from aberrant gestations with distinct genetic backgrounds and variable degrees of trophoblast proliferation of either neoplastic or non-neoplastic nature. GTD is categorized into hydatidiform moles and gestational trophoblastic neoplasms, and their clinical outcomes vary widely across different subtypes. Prompt and accurate diagnosis plays a pivotal role in the effective management and prognostication of patients.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Department of Obstetrics and Gynecology, Changhua Christan Hospital, Changhua, Taiwan. Electronic address:
Objective: Prenatal diagnosis of fetal 13q34 microdeletion is a rare condition, which may present with abnormal fetal development, including facial dysmorphism, mental retardation, and developmental delay. We present a pregnant woman in whom the fetus presented with a 0.24-cm ventricular septal defect at 20 weeks of gestation, with fetal 13q34 (113610612-115092648) deletion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!