is the causative agent of tuberculosis (TB). It acquires phenotypic drug resistance inside macrophages, and this resistance mainly arises from host-induced stress. However, whether cellular drug-efflux mechanisms in macrophages contribute to nonresponsiveness of to anti-TB drugs is unclear. Here, we report that xenobiotic nuclear receptors mediate TB drug nonresponsiveness by modulating drug-efflux transporters in macrophages. This was evident from expression analysis of drug-efflux transporters in macrophages isolated from TB patients. Among patients harboring rifampicin-susceptible we observed increased intracellular survival of upon rifampicin treatment of macrophages isolated from patients not responding to anti-TB drugs compared with macrophages from patients who did respond. Of note, infection and rifampicin exposure synergistically modulated macrophage drug-efflux transporters We also found that the xenobiotic nuclear receptor pregnane X receptor (PXR) modulates macrophage drug-efflux transporter expression and activity, which compromised the anti-TB efficacy of rifampicin. We further validated this finding in a TB mouse model in which use of the PXR antagonist ketoconazole rescued rifampicin anti-TB activity. We conclude that PXR activation in macrophages compromises the efficacy of the anti-TB drug rifampicin. Alternative therapeutic strategies, such as use of the rifampicin derivatives rifapentine and rifabutin, which do not activate PXR, or of a PXR antagonist, may be effective for tackling drug nonresponsiveness of that arises from drug-efflux systems of the host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846149 | PMC |
http://dx.doi.org/10.1074/jbc.M117.818377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!