Background: Accumulation mode particles (AMP) are formed from engine combustion and make up the inhalable vapour cloud of ambient particulate matter pollution. Their small size facilitates dispersal and subsequent exposure far from their original source, as well as the ability to penetrate alveolar spaces and capillary walls of the lung when inhaled. A significant immuno-stimulatory component of AMP is lipopolysaccharide (LPS), a product of Gram negative bacteria breakdown. As LPS is implicated in the onset and exacerbation of asthma, the presence or absence of LPS in ambient particulate matter (PM) may explain the onset of asthmatic exacerbations to PM exposure. This study aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airways disease by measuring airway inflammatory responses induced via activation of the LPS cellular receptor, Toll-like receptor 4 (TLR-4).
Methods: The effects of nebulized AMP, LPS and AMP administered with LPS on lung function, cellular inflammatory infiltrate and cytokine responses were compared between wildtype mice and mice not expressing TLR-4.
Results: The presence of LPS administered with AMP appeared to drive elevated airway resistance and sensitivity via TLR-4. Augmented TLR4 driven eosinophilia and greater TNF-α responses observed in AMP-LPS treated mice independent of TLR-4 expression, suggests activation of allergic responses by TLR4 and non-TLR4 pathways larger than those induced by LPS administered alone. Treatment with AMP induced macrophage recruitment independent of TLR-4 expression.
Conclusions: These findings suggest AMP-LPS as a stronger stimulus for allergic inflammation in the airways then LPS alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778683 | PMC |
http://dx.doi.org/10.1186/s12931-017-0701-z | DOI Listing |
Redox Rep
December 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.
Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.
Kaohsiung J Med Sci
December 2024
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.
View Article and Find Full Text PDFChem Biodivers
December 2024
Wuyi University, School of Pharmacy and Food Engineering, Yingbin Street NO.99, 529020, Jiangmen, CHINA.
Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed, synthesized and explored their anti-inflammatory activities and mechanism in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had lower degree of cytotoxicity than that of naproxen.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Emergency, The First People's Hospital of Tongxiang, Tongxiang, Zhejiang, China.
Objective: Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Department of General Medicine, The Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Road, Huimin District, Hohhot, Inner Mongolia, 010050, China.
Background: Heart failure (HF) is a syndrome with complex etiology and high mortality in the world. Macrophage-related inflammation is involved in HF development. O-GlcNAcylation is a post-translational modification that affects pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!