Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5'-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α, α, β, β, γ, and γ with a tubulin loading control. Significant FT-specific differences were found for α (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ (2.5-fold higher in MHC IIa vs. others), and γ (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5'-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00894.2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!