Microgravity and elevated levels of CO are two common environmental stressors in spaceflight that may affect cognitive performance of astronauts. In this randomized, double-blind, crossover trial (SPACECOT), 6 healthy males (mean ± SD age: 41 ± 5 yr) were exposed to 0.04% (ambient air) and 0.5% CO concentrations during 26.5-h periods of -12° head-down tilt (HDT) bed rest with a 1-wk washout period between exposures. Subjects performed the 10 tests of the Cognition Test Battery before and on average 0.1, 5.2, and 21.0 h after the initiation of HDT bed rest. HDT in ambient air induced a change in response strategy, with increased response speed (+0.19 SD; P = 0.0254) at the expense of accuracy (-0.19 SD; P = 0.2867), resulting in comparable cognitive efficiency. The observed effects were small and statistically significant for cognitive speed only. However, even small declines in accuracy can potentially cause errors during mission-critical tasks in spaceflight. Unexpectedly, exposure to 0.5% CO reversed the response strategy changes observed under HDT in ambient air. This was possibly related to hypercapnia-induced cerebrovascular reactivity that favors cortical regions in general and the frontal cortex in particular, or to the CNS arousing properties of mildly to moderately increased CO levels. There were no statistically significant time-in-CO effects for any cognitive outcome. The small sample size and the small effect sizes are major limitations of this study and its findings. The results should not be generalized beyond the group of investigated subjects until they are confirmed by adequately powered follow-up studies. NEW & NOTEWORTHY Simulating microgravity with exposure to 21 h of -12° head-down tilt bed rest caused a change in response strategy on a range of cognitive tests, with a statistically significant increase in response speed at the expense of accuracy. Cognitive efficiency was not affected. The observed speed-accuracy tradeoff was small but may nevertheless be important for mission-critical tasks in spaceflight. Importantly, the change in response strategy was reversed by increasing CO concentrations to 0.5%.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00855.2017DOI Listing

Publication Analysis

Top Keywords

response strategy
16
-12° head-down
12
head-down tilt
12
ambient air
12
bed rest
12
change response
12
elevated levels
8
cognitive performance
8
hdt bed
8
hdt ambient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!