Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confounded by behavior and habitat preference, which impact reliable methods for estimating their population. By integrating eDNA into round goby monitoring, improved estimates of biomass may be obtainable. We conducted mesocosm experiments to estimate rates of goby DNA shedding and decay. Further, we compared eDNA with several methods of traditional field sampling to compare its use as an alternative/complementary monitoring method. Environmental DNA decay was comparable to other fish species, and first-order decay was lower at 12°C (k = 0.043) than at 19°C (k = 0.058). Round goby eDNA was routinely detected in known invaded sites of Lake Michigan and its tributaries (range log10 4.8-6.2 CN/L), but not upstream of an artificial fish barrier. Traditional techniques (mark-recapture, seining, trapping) in Lakes Michigan and Huron resulted in fewer, more variable detections than eDNA, but trapping and eDNA were correlated (Pearson R = 0.87). Additional field testing will help correlate round goby abundance with eDNA, providing insight on its role as a prey fish and its impact on food webs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777661 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191720 | PLOS |
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Biology Department, University of St. Thomas, St. Paul, MN, USA. Electronic address:
The round goby (Neogobius melanostomus) is a benthic fish species native to Central Eurasia but has colonized much of the waterways in the Laurentian Great Lakes in North America. While they are known to produce acoustic signals that aid in conspecific agonistic and reproductive interactions, the species does not possess a swim bladder and thus does not have any hearing specializations that would allow for sound pressure detection. Here, the auditory evoked potentials from saccular hair cells were characterized to determine the frequency response and auditory sensitivity of the saccule.
View Article and Find Full Text PDFJ Environ Manage
December 2024
ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France. Electronic address:
With the number of invasive alien species increasing globally, the management of invaded areas is constantly seeking innovative and effective solutions. Thanks to recent technological advances, acoustic signals are increasingly used in species management, either as an indicator of the presence of species or as a stimulus to repel species from risky areas or attract species for monitoring or eradication purposes. However, acoustic-based solutions are still rarely used by freshwater managers.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Turner Institute of Ecoagriculture, Natural Resources Program, Bozeman, Montana 59718, United States.
Environmental DNA (eDNA) analysis has become a transformative technology, but sample collection methods lack standardization and sampling at effective frequencies requires considerable field effort. Autonomous eDNA samplers that can sample water at high frequencies offer potential solutions to these problems. We present results from four case studies using a prototype autonomous eDNA sampler as part of the U.
View Article and Find Full Text PDFBiol Open
November 2024
Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!