Purpose Of Review: Thioredoxin-interacting protein has emerged as a major factor regulating pancreatic β-cell dysfunction and death, key processes in the pathogenesis of type 1 and type 2 diabetes. Accumulating evidence based on basic, preclinical, and retrospective epidemiological research suggests that TXNIP represents a promising therapeutic target for diabetes. The present review is aimed at providing an update regarding these developments.
Recent Findings: TXNIP has been shown to be induced by glucose and increased in diabetes and to promote β-cell apoptosis, whereas TXNIP deletion protected against diabetes. More recently, TXNIP inhibition has also been found to promote insulin production and glucagon-like peptide 1 signaling via regulation of a microRNA. β-Cell TXNIP expression itself was found to be regulated by hypoglycemic agents, carbohydrate-response-element-binding protein, and cytosolic calcium or the calcium channel blocker, verapamil. Retrospective studies now further suggest that verapamil use might be associated with a lower incidence of type 2 diabetes in humans.
Summary: TXNIP has emerged as a key factor in the regulation of functional β-cell mass and TXNIP inhibition has shown beneficial effects in a variety of studies. Thus, the inhibition of TXNIP may provide a novel approach to the treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831522 | PMC |
http://dx.doi.org/10.1097/MED.0000000000000391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!