Comparing Strategies in the Design of Responsive Contrast Agents for Magnetic Resonance Imaging: A Case Study with Copper and Zinc.

Acc Chem Res

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

Published: February 2018

Magnetic resonance imaging (MRI) has emerged over the years as one of the preferred modalities for medical diagnostic and biomedical research. It has the advantage over other imaging modalities such as positron emission tomography and X-ray of affording high resolution three-dimensional images of the body without using harmful radiation. The use of contrast agents has further expanded this technique by increasing the contrast between regions where they accumulate and background tissues. As MRI most often measures the relaxation rate of water throughout the body, contrast agents function by modulating the intensity of the water signal either via improved relaxation or via saturation transfer to selected exchangeable proton. Among the growing class of MRI contrast agents, a subset of them called "smart" contrast agents function as responsive probes. Their ability to increase or decrease their signal intensity is modulated by the presence of an analyte. These probes offer the unique ability to image the distribution of an analyte in vivo, thereby opening new possibilities for diagnostics and for elucidating the role of specific analytes in various pathologies or biological processes. A number of different strategies can be exploited to design responsive MRI contrast agents. The majority of contrast agents are based on Gd complexes. These complexes can be rendered responsive in either of two ways: either by modulating the number of inner-sphere water molecules, q, or via modulating the rotational correlation time, τ, of the contrast agent upon substrate binding. The longitudinal relaxivity increases with the number of inner-sphere water molecules. Gd complexes can be rendered responsive if they contain a recognition moiety that can bind to both the open coordination site of Gd and to the analyte. When the recognition moiety leaves the lanthanide ion to bind to the analyte, q increases and therefore so does the relaxivity. The dependence of relaxivity on rotational correlation time is more complex and more pronounced at lower magnetic fields. In general, slower tumbling macromolecules have longer rotational correlation times and higher relaxivities. Analyte-triggered formation of macromolecules thus also increases relaxivity. Such macromolecules can either be analyte-templated supramolecular assemblies, or analyte-enhanced protein-contrast agent complexes. Chemical Exchange Saturation Transfer (CEST) agents are a newer class of contrast agents that offer the possibility of multifrequency and thus ratiometric imaging, which in turn enables quantitative mapping of the concentration of an analyte in vivo under conditions where the concentration of the contrast agent is not known. Such agents can be rendered responsive if the analyte changes the number of exchangeable proton(s), its exchange rate, or its chemical shift. All of these approaches have been successfully employed for detecting and imaging both copper and zinc, including in vivo. Magnetic Iron Oxide Nanoparticles (MIONs) are powerful MRI transverse relaxation agents. They can also be rendered responsive to an analyte if the latter can control the aggregation of the nanoparticles. For metal ions, this can be achieved via chemical functionalities that only react to form conjugates in the presence of the metal ion analyte.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.7b00301DOI Listing

Publication Analysis

Top Keywords

contrast agents
32
rendered responsive
16
rotational correlation
12
contrast
11
agents
11
design responsive
8
magnetic resonance
8
resonance imaging
8
copper zinc
8
agents function
8

Similar Publications

Increased plasma DOPA decarboxylase levels in Lewy body disorders are driven by dopaminergic treatment.

Nat Commun

January 2025

Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.

DOPA Decarboxylase (DDC) has been proposed as a cerebrospinal fluid (CSF) biomarker with increased concentrations in Lewy body disorders (LBDs) and highest levels in patients receiving dopaminergic treatment. Here we evaluate plasma DDC, measured by proximity extension assay, and the effect of dopaminergic treatment in three independent LBD (with a focus on dementia with Lewy bodies (DLB) and Parkinson's disease (PD)) cohorts: an autopsy-confirmed cohort (n = 71), a large multicenter, cross-dementia cohort (n = 1498) and a longitudinal cohort with detailed treatment information (n = 66, median follow-up time[IQR] = 4[4, 4] years). Plasma DDC was not altered between different LBDs and other disease groups or controls in absence of treatment.

View Article and Find Full Text PDF

Purpose: The purpose is to evaluate the effect of drainage from intentional extramacular holes after internal limiting membrane insertion to treat macular hole retinal detachment (MHRD) in highly myopic eyes.

Methods: This study is a retrospective, observational, and comparative case series that included 25 consecutive highly myopic eyes with MHRD. All eyes underwent standard 23-gauge vitrectomy, inverted internal limiting membrane insertion into the macular hole, subretinal fluid drainage from an intentionally created extramacular retinal hole, and tamponade with either silicone oil (SO group, n = 13) or perfluoropropane (CF group, n = 12).

View Article and Find Full Text PDF

Endothelial Growth Media Components Alters SARS-CoV-2 Spike-Directed Growth Kinetics.

J Virol Methods

January 2025

Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Department of Virology, Immunology & Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.

Direct SARS-CoV-2 infection of endothelial cells is challenging to study in vitro. To examine whether endothelial cell culture conditions impact the ability of SARS-CoV-2 to infect cells, we evaluated the effects of commercial cell culture media composition on SARS-CoV-2 Spike-directed viral infection. In African Green Monkey kidney epithelial cells (VeroE6), we found that commercial cell culture media (EGM2) produced inhibitory effects on recombinant vesicular stomatitis virus (rVSV-SARS-CoV-2) growth that is not seen in Dulbecco's Modified Eagle Medium (DMEM).

View Article and Find Full Text PDF

Blind-label subwavelength ultrasound imaging.

Sci Adv

January 2025

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 3436 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, USA.

There is a long-existing trade-off between the imaging resolution and penetration depth in acoustic imaging caused by the diffraction limit. Most existing approaches addressing this trade-off require controlled "labels," i.e.

View Article and Find Full Text PDF

Establishment of a Mouse Model with Cough Hypersensitivity via Inhalation of Citric Acid.

J Vis Exp

January 2025

State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University;

Cough is one of the most common symptoms of many respiratory diseases. Chronic cough significantly impacts quality of life and imposes a considerable economic burden. Increased cough sensitivity is a pathophysiological hallmark of chronic cough.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!