A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic plasticity in development: Synergistic responses to high temperature and hypoxia in zebrafish, Danio rerio. | LitMetric

This study investigated interactions of temperature and hypoxia on metabolic plasticity and regulation in zebrafish, Danio rerio, in the first week of development. Larval morphometry, oxygen consumption, and metabolic responses to acute changes in temperature and oxygen were measured in larvae reared under four conditions, including control (28°C and partial pressures of oxygen [PO] of 21 kPa), high temperature (31°C), hypoxia (11 kPa), and the two stressors combined. Rearing conditions did not result in consistent morphometric changes; substantial metabolic adjustments, however, were evident. While acute temperature increase resulted in elevated oxygen consumption, with a Q of 2.2 ± 0.08, early-staged larvae were able to compensate to chronic temperature rise as routine metabolic rates did not differ between 28°C and 31°C chronic treatments. In contrast, larval responses to chronic and acute hypoxia were similar, with ∼30% decrease in metabolic rates from normoxic values at both temperatures. Further, prior exposure to chronic hypoxia in conjunction with acute high temperature increased Q by a factor of 2.5 from 2.2 ± 0.08 to 5.6 ± 0.19. Metabolic suppression by acute hypoxia was independent of any prior exposure conditions. In short, results from this study showed that zebrafish larvae exhibited surprising temperature resilience and metabolic plasticity to a 3°C temperature rise even in their first week of life. Yet exposure to a second stressor (hypoxia) resulted in elevated sensitivity to temperature change that may lead to bioenergetic imbalance due to synergetic effects of temperature and hypoxia on metabolic rates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.2092DOI Listing

Publication Analysis

Top Keywords

metabolic plasticity
12
high temperature
12
temperature hypoxia
12
metabolic rates
12
temperature
11
metabolic
9
hypoxia
8
zebrafish danio
8
danio rerio
8
hypoxia metabolic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!