Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated Hemoglobin N.

Angew Chem Int Ed Engl

Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland.

Published: March 2018

The conversion of nitric oxide (NO) into nitrate (NO ) by dioxygenation protects cells from lethal NO. Starting from NO-bound heme, the first step in converting NO into benign NO is the ligand exchange reaction FeNO+O →FeO +NO, which is still poorly understood at a molecular level. For wild-type (WT) truncated hemoglobin N (trHbN) and its Y33A mutant, the calculated barriers for the exchange reaction differ by 1.5 kcal mol , compared with 1.7 kcal mol from experiment. It is directly confirmed that the ligand exchange reaction is rate-limiting in trHbN and that entropic contributions account for 75 % of the difference between the WT and the mutant. Residues Tyr 33, Phe 46, Val 80, His 81, and Gln 82 surrounding the active site are expected to control the reaction path. By comparison with electronic structure calculations, the transition state separating the two ligand-bound states was assigned to a A state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201711445DOI Listing

Publication Analysis

Top Keywords

exchange reaction
12
truncated hemoglobin n
8
ligand exchange
8
kinetic analysis
4
analysis structural
4
structural interpretation
4
interpretation competitive
4
competitive ligand
4
ligand binding
4
binding dioxygenation
4

Similar Publications

Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.

View Article and Find Full Text PDF

The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!