Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.23330 | DOI Listing |
Underwater optical imaging, especially in coastal waters, suffers from reduced spatial resolution and contrast by forward scattered light. With the increased number of hyper- and multi-spectral imaging applications, the effect of the point spread function (PSF) at different spectral bands becomes increasingly more relevant. In this work, extensive laboratory measurements of the PSF at 450, 500, 550, 600 and 650 nm in different turbidity have been carried out.
View Article and Find Full Text PDFCoherence scanning interferometry (CSI) is a non-destructive method for measuring the microstructure surface topography, but it fails to retrieve the bottom topography because the detection light is blocked by the sidewalls of the high aspect ratio (HAR) samples. Our team has proposed CSI technology with the detection light transparent to the sample to measure the surface topography thus ensuring the numerical aperture of the detection light with high throughput. However, a dedicated optical path to monitor the aberrations caused by the modulation from the sample is necessary and a complex optical path is added for aberration correction, which inevitably increases the design complexity and component costs of the optical system.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) has become a valuable tool in the field of biomedical research due to its ability to quantify refractive index variations of live cells and tissues. For example, three-dimensional differential phase contrast (3D DPC) imaging uses through-focus images captured under different illumination patterns deconvoluted with a computed 3D phase transfer function (PTF) to reconstruct the 3D refractive index. In conventional 3D DPC with semi-circular illumination, partially spatially coherent illumination often diminishes phase contrast, exacerbating inherent noise, and can lead to a large number of zero values in the 3D PTF, resulting in strong low-frequency artifacts and deteriorating imaging resolution.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.
Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.
Cogn Neurodyn
December 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, TamilNadu India.
Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!