Diverse commercially available feeds are used in animal studies according to the purpose of the studies. We sought to understand the relationship between feed ingredients and their effects on animal physiology and behaviors. Here, we investigated how male laboratory mice (C57BL/6J ("B6") mice) were affected by chronic feeding with two commercially available diets, a non-purified diet (MF) and a semi-purified diet (AIN-93G). In B6 mice, both diets similarly induced spontaneous activities in the home cage and the open field box, anxiety in the elevated plus maze test, and depressive-like behaviors in tail-suspension and forced-swimming tests, and with both diets, similar data were obtained on calorie intake, water intake, body weight gain, and plasma corticosterone levels. By contrast, liver weight was significantly higher in MF-fed B6 mice than in AIN-93G-fed B6 mice. Furthermore, the cecum microbiome was drastically affected by the diets, and, specifically, Allobaculum was the major genus (43.4%) in the cecum microbiota of AIN-93G-fed mice but its abundance was reduced (to 3.8%) in the case of MF-fed mice. Future studies should address whether the differences in diet purity and cecum microbiota influence brain functions and behaviors in B6 mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2018.01.025 | DOI Listing |
Nanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.
View Article and Find Full Text PDFSickle cell disease (SCD) is the most common genetic disease in the world and a societal challenge. SCD is characterized by multi-organ injury related to intravascular hemolysis. To understand tissue-specific responses to intravascular hemolysis and exposure to heme, we present a transcriptomic atlas in the primary target organs of HbSS vs HbAA transgenic SCD mice.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFSci Adv
January 2025
Aix-Marseille Université, INSERM, UNIS, Marseille, France.
Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!