A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn (in the form of SnF) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0022034517737027DOI Listing

Publication Analysis

Top Keywords

gene expression
8
streptococcus mutans
8
mutans actinomyces
8
actinomyces viscosus
8
microarray experiments
8
100 ppm
8
inhibited genes
8
genes encoding
8
galactose pathway
8
key enzyme
8

Similar Publications

Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances.

Pest Manag Sci

March 2025

Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.

Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism.

View Article and Find Full Text PDF

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.

View Article and Find Full Text PDF

Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.

View Article and Find Full Text PDF

The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!