A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of casein & whey protein hydrolysates as well as milk fermentates from for expression of gut hormones. | LitMetric

AI Article Synopsis

  • - The study investigates how milk proteins, specifically casein and whey, along with fermented milk from Lactobacillus helveticus, affect gut hormones related to food intake and blood sugar levels, which is important for managing type 2 diabetes (T2DM).
  • - Researchers used real-time PCR and ELISA to analyze the effects of these proteins on gene expression and secretion of hormones like GLP-1, finding that both casein and whey hydrolysates enhanced hormone secretion, with intact casein showing the highest effectiveness.
  • - Two active peptides (F5 and F7) were identified from casein and whey that significantly increased GLP-1 secretion, suggesting that these milk-derived compounds may serve as potential new treatments for T

Article Abstract

Background & Objectives: Milk proteins play a beneficial role in the regulation of food intake, postprandial glycaemia and enteroendocrine hormone secretions and thus are receiving considerable attention for the management of metabolic inflammatory disorders such as type 2 diabetes mellitus (T2DM). The objective of this study was to evaluate the efficacy of peptide/s obtained from milk proteins (casein and whey) as well as from the milk fermented with Lactobacillus helveticus as secretagogues for gut hormones and to purify and characterize the active peptides.

Methods: Effect of hydrolysates of casein protein (CP) and whey protein (WP) and L. helveticus fermented milk on the expression of proglucagon, pro-gastric inhibitory peptide (GIP) and cholecystokinin (CCK) genes was monitored by real-time quantitative polymerase chain reaction. The active glucagon-like peptide-1 (GLP-1) secretion was also quantitatively measured using ELISA.

Results: Hydrolysates of CP and WP as well as fermentates of L. helveticus induced the proglucagon, pro-GIP and CCK expression and secretion of GLP-1 in STC-1 (pGIP/Neo) cells. However, intact casein exhibited maximum GLP-1 secretion and proglucagon expression. Two active peptides (F5 and F7) derived from CP1 and WP3 hydrolysates having the ability to upregulate the GLP-1 secretion by 1.6 and 1.8 folds were obtained, and the mass was found to be 786 and 824 Da, respectively, as determined by electrospray ionization-mass spectrometry. However, no single active peptide from L. helveticus fermented milk could be obtained.

Interpretation & Conclusions: Casein as well as fermentates obtained from L. helveticus fermented milk showed higher potential for GLP-1 induction. These can be explored as novel therapeutics to T2DM effectively after demonstrating their in vivo efficacy in appropriate animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793478PMC
http://dx.doi.org/10.4103/ijmr.IJMR_802_15DOI Listing

Publication Analysis

Top Keywords

helveticus fermented
12
fermented milk
12
glp-1 secretion
12
casein whey
8
whey protein
8
hydrolysates well
8
well milk
8
gut hormones
8
milk proteins
8
well fermentates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!