Background & Objectives: Genomic constitution of the bacterium Legionella pneumophila plays an important role in providing them a pathogenic potential. Here, we report the standardization and application of multiplex polymerase chain reaction (PCR) for the detection of molecular markers of pathogenic potential in L. pneumophila in hospital environment.

Methods: Culture of the standard strains of L. pneumophila was performed in buffered charcoal-yeast extract agar with L-cysteine at p H 6.9. Primers were designed for multiplex PCR, and standardization for the detection of five markers annotated to L. pneumophila plasmid pLPP (11A2), lipopolysaccharide synthesis (19H4), CMP-N-acetylneuraminic acid synthetase (10B12), conjugative coupling factor (24B1) and hypothetical protein (8D6) was done. A total of 195 water samples and 200 swabs were collected from the hospital environment. The bacterium was isolated from the hospital environment by culture and confirmed by 16S rRNA gene PCR and restriction enzyme analysis. A total of 45 L. pneumophila isolates were studied using the standardized multiplex PCR.

Results: The PCR was sensitive to detect 0.1 ng/μl DNA and specific for the two standard strains used in the study. Of the 45 hospital isolates tested, 11 isolates had four markers, 12 isolates had three markers, 10 isolates had two markers, nine isolates had one marker and three isolates had none of the markers. None of the isolates had all the five markers.

Interpretation & Conclusions: The findings of this study showed the presence of gene markers of pathogenic potential of the bacterium L. pneumophila. However, the genomic constitution of the environmental isolates should be correlated with clinical isolates to prove their pathogenic potential. Rapid diagnostic methods such as multiplex PCR reported here, for elucidating gene markers, could help in future epidemiological studies of bacterium L. pneumophila.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793476PMC
http://dx.doi.org/10.4103/ijmr.IJMR_623_16DOI Listing

Publication Analysis

Top Keywords

pathogenic potential
16
markers isolates
16
isolates markers
12
isolates
11
markers
9
multiplex polymerase
8
polymerase chain
8
chain reaction
8
environmental isolates
8
genomic constitution
8

Similar Publications

Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations.

Clin Epigenetics

December 2024

Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.

View Article and Find Full Text PDF

Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone.

View Article and Find Full Text PDF

We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).

View Article and Find Full Text PDF

Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens.

View Article and Find Full Text PDF

Borrelia miyamotoi disease (BMD), also known as hard-tick relapsing fever, is an emerging tick-borne illness caused by the bacterium Borrelia miyamotoi. This pathogen is transmitted primarily by Ixodes ticks, also known as deer ticks or black-legged ticks. BMD poses significant public health concerns because of its potential to cause severe hemodynamic and hematologic disturbances, particularly in vulnerable populations such as pregnant individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!