Background: Available therapies for Alzheimer's disease (AD) can only alleviate and delay the advance of symptoms, with the greatest impact eventually achieved when provided at an early stage. Thus, early identification of which subjects at high risk, e.g., with MCI, will later develop AD is of key importance. Currently available machine learning algorithms achieve only limited predictive accuracy or they are based on expensive and hard-to-collect information.
Objective: The current study aims to develop an algorithm for a 3-year prediction of conversion to AD in MCI and PreMCI subjects based only on non-invasively and effectively collectable predictors.
Methods: A dataset of 123 MCI/PreMCI subjects was used to train different machine learning techniques. Baseline information regarding sociodemographic characteristics, clinical and neuropsychological test scores, cardiovascular risk indexes, and a visual rating scale for brain atrophy was used to extract 36 predictors. Leave-pair-out-cross-validation was employed as validation strategy and a recursive feature elimination procedure was applied to identify a relevant subset of predictors.
Results: 16 predictors were selected from all domains excluding sociodemographic information. The best model resulted a support vector machine with radial-basis function kernel (whole sample: AUC = 0.962, best balanced accuracy = 0.913; MCI sub-group alone: AUC = 0.914, best balanced accuracy = 0.874).
Conclusions: Our algorithm shows very high cross-validated performances that outperform the vast majority of the currently available algorithms, and all those which use only non-invasive and effectively assessable predictors. Further testing and optimization in independent samples will warrant its application in both clinical practice and clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326743 | PMC |
http://dx.doi.org/10.3233/JAD-170547 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
JMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFJMIR AI
January 2025
Department of Radiology, Children's National Hospital, Washington, DC, United States.
J Chem Theory Comput
January 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.
Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.
View Article and Find Full Text PDFPLoS One
January 2025
Dirección General de Minería, República Dominicana.
This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!