AI Article Synopsis

  • Current-voltage hysteresis in organo-halide perovskite solar cells can be mitigated by engineering a thin methylammonium iodide-rich interface between the perovskite and metal oxide, improving cell performance.
  • Surface functionalization techniques enable control over the composition of this interface, transitioning it from lead (Pb) poor to Pb rich, while keeping the bulk properties of the perovskite films intact.
  • Advanced techniques like X-ray reflectivity and Kelvin probe force microscopy have provided insights into the structural changes at the interface and local potential variations, contributing to a new understanding of hysteresis in these solar cells.

Article Abstract

Current-voltage hysteresis is a major issue for normal architecture organo-halide perovskite solar cells. In this manuscript we reveal a several-angstrom thick methylammonium iodide-rich interface between the perovskite and the metal oxide. Surface functionalization via self-assembled monolayers allowed us to control the composition of the interface monolayer from Pb poor to Pb rich, which, in parallel, suppresses hysteresis in perovskite solar cells. The bulk of the perovskite films is not affected by the interface engineering and remains highly crystalline in the surface-normal direction over the whole film thickness. The subnanometer structural modifications of the buried interface were revealed by X-ray reflectivity, which is most sensitive to monitor changes in the mass density of only several-angstrom thin interfacial layers as a function of substrate functionalization. From Kelvin probe force microscopy study on a solar cell cross section, we further demonstrate local variations of the potential on different electron-transporting layers within a solar cell. On the basis of these findings, we present a unifying model explaining hysteresis in perovskite solar cells, giving an insight into one crucial aspect of hysteresis for the first time and paving way for new strategies in the field of perovskite-based opto-electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b15904DOI Listing

Publication Analysis

Top Keywords

perovskite solar
12
solar cells
12
hysteresis perovskite
8
solar cell
8
perovskite
5
solar
5
evidence tailoring
4
tailoring interfacial
4
interfacial chemical
4
chemical composition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!