ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

Ext Abstr Hum Factors Computing Syst

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Published: May 2017

Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771475PMC
http://dx.doi.org/10.1145/3027063.3053103DOI Listing

Publication Analysis

Top Keywords

deep learning
16
learning models
8
deep
5
shapeshop understanding
4
understanding deep
4
learning
4
learning representations
4
representations interactive
4
interactive experimentation
4
experimentation deep
4

Similar Publications

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

The use of routine adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) is controversial in elderly patients with early-stage breast cancer (EBC). This study aimed to evaluate the efficacy of adjuvant RT for elderly EBC patients using deep learning (DL) to personalize treatment plans. Five distinct DL models were developed to generate personalized treatment recommendations.

View Article and Find Full Text PDF

Background: Detection of atrial tachyarrhythmias (ATA) on long-term electrocardiogram (ECG) recordings is a prerequisite to reduce ATA-related adverse events. However, the burden of editing massive ECG data is not sustainable. Deep learning (DL) algorithms provide improved performances on resting ECG databases.

View Article and Find Full Text PDF

Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.

View Article and Find Full Text PDF

AlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!