A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods. | LitMetric

The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's range from 0.24 to 0.86, all =0.001), for tree density (Global Moran's =0.452, =0.001), and in the OLS regression residuals (Global Moran's range from 0.32 to 0.38, all <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r=-0.19; conventional -value=0.016; spatially adjusted -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r=-0.18; conventional -value=0.019; spatially adjusted -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771436PMC
http://dx.doi.org/10.1007/BF03354902DOI Listing

Publication Analysis

Top Keywords

global moran's
16
socio-demographic characteristics
12
tree density
12
spatial autocorrelation
12
ols regression
12
spatial
8
spatial distribution
8
distribution trees
8
neighborhood socio-demographic
8
regression residuals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!