Microbial communities in deep subsurface sediments are challenged by the decrease in amount and quality of organic substrates with depth. In sediments of the Baltic Sea, they might additionally have to cope with an increase in salinity from ions that have diffused downward from the overlying water during the last 9000 years. Here, we report the isolation and characterization of four novel bacteria of the from depths of 14-52 m below seafloor (mbsf) of Baltic Sea sediments sampled during International Ocean Discovery Program (IODP) Expedition 347. Based on physiological, chemotaxonomic and genotypic characterization, we propose that the four strains represent two new species within a new genus in the family , with the proposed names gen. nov., sp. nov. (type strain 59.10-2M) and sp. nov. (type strains 59.16B) with additional strains of this species (59.10-1M and 60.6M). The draft genomes of the two type strains had sizes of 5.2 and 5.3 Mb and reflected the major physiological capabilities. The strains showed gliding motility, were psychrotolerant, neutrophilic and halotolerant. Growth by fermentation of mono- and disaccharides as well as pyruvate, lactate and glycerol was observed. During glucose fermentation, small amounts of electron equivalents were transferred to Fe(III) by all strains, while one of the strains also reduced Mn(IV). Thereby, the four strains broaden the phylogenetic range of prokaryotes known to reduce metals to the group of . Halotolerance and metal reduction might both be beneficial for survival in deep subsurface sediments of the Baltic Sea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760507 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.02614 | DOI Listing |
Evolution
January 2025
Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
A new species can form through hybridization between species. Hybrid speciation in animals has been intensely debated, partly because hard evidence for the process has been difficult to obtain. Here we report the discovery of a European hybrid butterfly lineage, a finding that can be considered surprising given the intense and long-term study of European butterflies.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany.
This study evaluates the distribution and sources of thermogenic organic matter in the Baltic Sea water column, focusing on polycyclic aromatic hydrocarbons (PAH), dissolved black carbon (DBC), and the imprint of thermogenic organic matter on the dissolved organic matter (DOM) pool. The spatial patterns and complex interactions between land-based and atmospheric sources were assessed from Kiel Bay to Pomeranian Bight within the water column with the combined targeted and untargeted approaches. The findings emphasize the significant influence of terrestrial inputs from the Oder River and autochthonous production composing DOM.
View Article and Find Full Text PDFThis review discusses the contribution of phenotypic heterogeneity in fungi to pathogenesis and antifungal drug resistance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!