Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760551PMC
http://dx.doi.org/10.3389/fphys.2017.01108DOI Listing

Publication Analysis

Top Keywords

caii-deficient mice
28
water flux
16
urinary concentration
12
flux aquaporin-1
12
mice
10
carbonic anhydrase
8
caii
8
mice increased
8
aquaporin-1 tdl
8
concentrated medullary
8

Similar Publications

Background And Purpose: Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation.

Experiment Approach: The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence.

View Article and Find Full Text PDF

Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known.

View Article and Find Full Text PDF

Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction.

Mol Biol Cell

March 2015

Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB T6G 1C9, Canada Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada

Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule.

View Article and Find Full Text PDF

Carbonic anhydrase II promotes cardiomyocyte hypertrophy.

Can J Physiol Pharmacol

December 2012

Membrane Protein Disease Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, AB, Canada.

Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses to heart failure. The sodium-proton exchanger (NHE1) and chloride-bicarbonate exchanger (AE3) have been implicated as important in the hypertrophic cascade. Carbonic anhydrase II (CAII) provides substrates for these transporters (protons and bicarbonate, respectively).

View Article and Find Full Text PDF

Carbonic anhydrase (CA) is strongly expressed in the duodenum and has been implicated in a variety of physiological functions including enterocyte HCO(3)(-) supply for secretion and the "sensing" of luminal acid and CO(2). Here, we report the physiological role of the intracellular CAII isoform involvement in acid-, PGE(2,) and forskolin-induced murine duodenal bicarbonate secretion (DBS) in vivo. CAII-deficient and WT littermates were studied in vivo during isoflurane anesthesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!