Diabetic foot ulcer is a chronic, refractory, frequent complication in diabetic patient. Its treatment often requires multidisciplinary joint efforts, diverse strategies have been adopted to address this annoying issue, including stem cell-based therapy/acellular dermal matrix/negative pressure wound therapy etc. However, consensus has not been reached. To assess the current evidence regarding the efficiency and potential advantages of stem cell-based therapy compared with conventional standard treatment and/or placebo in the treatment of diabetic foot ulcer. A comprehensive search in PubMed, EmBase, Cochrane Central and Web of Science databases was conducted during December 2016 and a systematic review and meta-analysis of all relevant studies were performed. A total of 7 studies that involved 224 diabetic foot patients, classified as Wagner grades 1-5, were analyzed. The pooled results confirmed the benefits of using the stem cell treatment. Partial and/or complete healing were significantly higher in the stem cell group compared with the control group (77.4% vs. 31.9%; RR: 2.22; 95% CI, 1.65-2.98). Subgroup analysis on ABI and TCP02 also confirmed the results. The present meta-analysis indicates that stem cell-based therapy can enhance the healing of diabetic foot ulcers and is associated with lesser pain, lower amputation rate and improved prognosis compared with normal treatment. Well-designed randomized controlled trials are required in the future in order to confirm and update these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1507/endocrj.EJ17-0424DOI Listing

Publication Analysis

Top Keywords

diabetic foot
20
stem cell
12
foot ulcer
12
stem cell-based
12
treatment diabetic
8
cell-based therapy
8
treatment
6
diabetic
6
foot
5
stem
5

Similar Publications

Bulk and Single-Cell Transcriptome Analyses Unravel Gene Signatures of Mitochondria-Associated Programmed Cell Death in Diabetic Foot Ulcer.

J Cell Mol Med

December 2024

Department of Orthopedics, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China.

Mitochondrial programmed cell death (PCD) plays a critical role in the pathogenesis of diabetic foot ulcers (DFU). In this study, we performed a comprehensive transcriptome analysis to identify potential hub genes and key cell types associated with PCD and mitochondria in DFU. Using intersection analysis of PCD- and mitochondria-related genes, we identified candidate hub genes through protein-protein interaction and random forest analysis.

View Article and Find Full Text PDF

Spatiotemporal single-cell roadmap of human skin wound healing.

Cell Stem Cell

December 2024

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden. Electronic address:

Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization.

View Article and Find Full Text PDF

Background: Diabetic patients often present with complex limb pathology, resulting in impaired sensation in the distal extremities making tactile injuries such as burns difficult to notice. We posit that poorly controlled diabetes mellitus, evidenced by increasing elevations in hemoglobin A1c, is associated with delayed wound healing and increased complications in burn patients.

Methods: The TriNetX Network, a database of 89 million patients across the U.

View Article and Find Full Text PDF

Advances in Machine Learning-Aided Thermal Imaging for Early Detection of Diabetic Foot Ulcers: A Review.

Biosensors (Basel)

December 2024

Academy for Engineering and Technology, Yiwu Research Institute, Fudan University, Shanghai 200433, China.

The prevention and early warning of foot ulcers are crucial in diabetic care; however, early microvascular lesions are difficult to detect and often diagnosed at later stages, posing serious health risks. Infrared thermal imaging, as a rapid and non-contact clinical examination technology, can sensitively detect hidden neuropathy and vascular lesions for early intervention. This review provides an informative summary of the background, mechanisms, thermal image datasets, and processing techniques used in thermal imaging for warning of diabetic foot ulcers.

View Article and Find Full Text PDF

Background: Loss or displacement of a fat pad on the foot increases plantar pressure, leading to pain and plantar ulcers. These ulcers, especially in patients with diabetic neuropathy, have high recurrence rates, often resulting in amputations. Standard of care focuses on reducing plantar pressure with shoe padding or orthotic devices, leaving the restoration of the fat pad as an unmet medical need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!