AI Article Synopsis

Article Abstract

A system using energy-dispersive X-ray diffraction (EDXRD) has been developed and tested using multivariate calibration for the quantitative analysis of tablet-form mixtures of common pharmaceutical ingredients. A principal advantage of EDXRD over the more traditional and common angular dispersive X-ray diffraction technique (ADXRD) is the potential of EDXRD to analyse tablets within their packaging, due to the higher energy X-rays used. In the experiment, a series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared and pressed into tablets. EDXRD profiles were recorded on each sample and a principal component analysis (PCA) was carried out in both unpackaged and packaged scenarios. In both cases the first two principal components explained >98% of the between-sample variance. The PCA projected the sample profiles into two dimensional principal component space in close accordance to their ternary mixture design, demonstrating the discriminating potential of the EDXRD system. A partial least squares regression (PLSR) model was built with the samples and was validated using leave-one-out cross-validation. Low prediction errors of between 2% and 4% for both unpackaged and packaged tablets were obtained for all three chemical compounds. The prediction capability through packaging demonstrates a truly non-destructive method for quantifying tablet composition and demonstrates good potential for EDXRD to be applied in the field of counterfeit medicine screening and pharmaceutical quality control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.12.036DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
potential edxrd
12
multivariate calibration
8
energy-dispersive x-ray
8
tablets packaging
8
principal component
8
unpackaged packaged
8
edxrd
6
calibration energy-dispersive
4
diffraction data
4

Similar Publications

The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.

View Article and Find Full Text PDF

Cuprous oxide (CuO) thin films were chemically deposited from a solution onto GaAs(100) and (111) substrates using a simple three-component solution at near-ambient temperatures (10-60 °C). Interestingly, a similar deposition onto various other substrates including Si(100), Si(111), glass, fluorine-doped tin oxide, InP, and quartz resulted in no film formation. Films deposited on both GaAs(100) and (111) were found alongside substantial etching of the substrates.

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior.

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!