Safranal, a monoterpene aldehyde, is present as one of the main volatile constituents of Crocus sativus Linn. (saffron flowers). This volatile constituent not only contributes to the aroma of saffron but has been reported to possess antidiabetic, antiulcer, antiasthamatic, anticonvulsant, antidepressant, cardioprotective, anticancer and UV protective properties. Most of these therapeutic actions are contributed by its potential to quench reactive oxygen species (ROS). Antioxidant properties of phytoconstituents are now being explored for developing photoprotective skin formulations. These bioactives have the potential to protect the epidermal and dermal layers of the skin which mainly comprises of elastin and collagen. When UV rays penetrate the dermal layers, there is an increased production of elastase, collagenase and hyaluronidase leading to degradation of collagen, elastin and hyaluronic acid respectively. These dermal components are responsible to provide strength, elasticity and moisture to the skin. Due to frequent exposure to sunlight, these conditions tend to augment leading to wrinkle formation and sagging of skin. Although antioxidant properties of safranal have been established on various cell lines but till date no studies have been reported regarding the dermal enzyme inhibition activities. In the current research work, a comprehensive in vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal along with determination of sun protection factor (SPF) was carried out. The in vitro antioxidant activity was carried out by diphenylpicrylhydrazyl (DPPH) method and its IC value was found to be 22.7 μg/ml. The enzyme inhibition IC values of safranal for anti elastase activity were found to be 43.6 μg/ml, 70 μg/ml for antihyaluronidase activity and 9.4 μg/ml for anticollagenase activity. Photoprotective activity of safranal was determined by UV absorbance method and SPF calculated by Mansur equation which was found to be 6.6. The significant inhibitory activity of safranal on matrix metalloproteinases (MMPs) responsible for aging and a higher SPF established that this bioorganic molecule is a strong photoprotective agent. Its established free radical scavenging capability along with above characteristics make it a valuable component to be incorporated into herbal antiaging formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2017.12.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!