Post-translational modifications in tumor biomarkers: the next challenge for aptamers?

Anal Bioanal Chem

Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.

Published: March 2018

Advances in proteomics have fueled the search for novel cancer biomarkers with higher selectivity. Differential expression of low abundant proteins has been the usual way of finding those biomarkers. The existence of a selective receptor for each biomarker is compulsory for their use in diagnostic/prognostic assays. Antibodies are the receptors of choice in most cases although aptamers are becoming familiar because of their facile and reproducible synthesis, chemical stability as well as comparable affinity and selectivity. In recent years, it has been reported that the pattern of post-translational modifications, altered under neoplastic disease, is a better predictive biomarker than the total protein level. Among others, abnormal glycosylation is attracting great attention. Lectins and antibodies are being used for identification and detection of the carbohydrate moiety with low level of discrimination among various glycoproteins. Such level of selectivity is critical to bring next-generation biomarkers to the clinic. Aptamers that can be rationally tailored for a certain molecule domain can become the golden receptor to specifically detect aberrant glycosylation at each protein or even at each glycosylation site, providing new diagnostic tools for early detection of cancer. Graphical abstract Aptamers may specifically differentiate normal from aberrant glycoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-018-0861-9DOI Listing

Publication Analysis

Top Keywords

post-translational modifications
8
modifications tumor
4
biomarkers
4
tumor biomarkers
4
biomarkers challenge
4
challenge aptamers?
4
aptamers? advances
4
advances proteomics
4
proteomics fueled
4
fueled search
4

Similar Publications

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body.

View Article and Find Full Text PDF

Insights on Bmi-1 therapeutic targeting in head and neck cancers.

Oncol Res

January 2025

LICIFO, Department of Restorative Sciences, Faculty of Dentistry, University of Costa Rica (HNSCC), San José, 11501, Costa Rica.

The B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) protein of the polycomb complex is an essential mediator of the epigenetic transcriptional silencing by the chromatin structure. It has been reported to be crucial for homeostasis of the stem cells and tumorigenesis. Though years of investigation have clarified Bmi-1's transcriptional regulation, post-translational modifications, and functions in controlling cellular bioenergetics, pathologies, and DNA damage response, the full potential of this protein with so many diverse roles are still unfulfilled.

View Article and Find Full Text PDF

Enhanced membrane protein production in HEK293T cells via gene knockout: A CRISPR-Cas9 mediated approach.

Biomol Biomed

January 2025

Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!