Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals.

Appl Microbiol Biotechnol

Department of Plant and Microbial Biology, North Carolina State University, 4550A Thomas Hall, Campus Box 7612, Raleigh, NC, 27695, USA.

Published: February 2018

Cyanobacteria are photosynthetic prokaryotes that can fix atmospheric CO and can be engineered to produce industrially important compounds such as alcohols, free fatty acids, alkanes used in next-generation biofuels, and commodity chemicals such as ethylene or farnesene. They can be easily genetically manipulated, have minimal nutrient requirements, and are quite tolerant to abiotic stress making them an appealing alternative to other biofuel-producing microbes which require additional carbon sources and plants which compete with food crops for arable land. Many of the compounds produced in cyanobacteria are toxic as titers increase which can slow growth, reduce production, and decrease overall biomass. Additionally, many factors associated with outdoor culturing of cyanobacteria such as UV exposure and fluctuations in temperature can also limit the production potential of cyanobacteria. For cyanobacteria to be utilized successfully as biofactories, tolerance to these stressors must be increased and ameliorating stress responses must be enhanced. Genetic manipulation, directed evolution, and supplementation of culture media with antioxidants are all viable strategies for designing more robust cyanobacterial strains that have the potential to meet industrial production goals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-8755-5DOI Listing

Publication Analysis

Top Keywords

cyanobacteria
5
methods enhancing
4
enhancing cyanobacterial
4
cyanobacterial stress
4
stress tolerance
4
tolerance enable
4
enable improved
4
production
4
improved production
4
production biofuels
4

Similar Publications

The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Monitoring phycocyanin in global inland waters by remote sensing: Progress and future developments.

Water Res

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.

View Article and Find Full Text PDF

Overlooked tripartite microbial interactions influencing chemical cycling in the ocean.

Trends Microbiol

January 2025

Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales 2007, Australia; UAR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France. Electronic address:

Inter-microbial interactions fundamentally govern ocean ecology and biogeochemistry. Recently, Henshaw and colleagues revealed that important inter-bacterial associations in the ocean can be shaped by viral infections, whereby infected cyanobacteria release specific chemicals that attract heterotrophic bacteria, uncovering a new tripartite microbial interaction that influences carbon transfer in the surface ocean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!