The report reflects an agreement based on the consensus conference of the International Standardization Committee on the Objective Assessment of the Nasal Airway in Riga, 2nd Nov. 2016. The aim of the conference was to address the existing nasal airway function tests and to take into account physical, mathematical and technical correctness as a base of international standardization as well as the requirements of the Council Directive 93/42/EEC of 14 June 1993 concerning medical devices. Rhinomanometry, acoustic rhinometry, peak nasal inspiratory flow, Odiosoft-Rhino, optical rhinometry, 24-h measurements, computational fluid dynamics, nasometry and the mirrow test were evaluated for important diagnostic criteria, which are the precision of the equipment including calibration and the software applied; validity with sensitivity, specificity, positive and negative predictive values, reliability with intra-individual and inter-individual reproducibility and responsiveness in clinical studies. For rhinomanometry, the logarithmic effective resistance was set as the parameter of high diagnostic relevance. In acoustic rhinometry, the area of interest for the minimal cross-sectional area will need further standardization. Peak nasal inspiratory flow is a reproducible and fast test, which showed a high range of mean values in different studies. The state of the art with computational fluid dynamics for the simulation of the airway still depends on high performance computing hardware and will, after standardization of the software and both the software and hardware for imaging protocols, certainly deliver a better understanding of the nasal airway flux.

Download full-text PDF

Source
http://dx.doi.org/10.4193/Rhin17.084DOI Listing

Publication Analysis

Top Keywords

nasal airway
16
consensus conference
8
airway function
8
function tests
8
international standardization
8
acoustic rhinometry
8
peak nasal
8
nasal inspiratory
8
inspiratory flow
8
computational fluid
8

Similar Publications

Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.

Am J Respir Cell Mol Biol

January 2025

University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.

Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.

View Article and Find Full Text PDF

Chronic rhinosinusitis with nasal polyps (CRSwNP), asthma, and non-steroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) frequently coexist, forming a complex multimorbid condition often referred to as "global airway disease." This concept reflects shared pathophysiological mechanisms of eosinophilic inflammation and underscores the need for integrated treatment strategies targeting both upper and lower airway manifestations (1). The burden of severe CRSwNP, asthma, and N-ERD is substantial, particularly in terms of reduced quality of life, recurrent exacerbations, revision endoscopic sinus surgeries (ESS), and healthcare utilization (2).

View Article and Find Full Text PDF

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Establishment of a mouse model of allergic asthma sensitized and triggered with PM2.5.

Int J Environ Health Res

January 2025

Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

To establish a mouse model of asthma sensitized and challenged with PM2.5 extract, 48 female BALB/c mice were included in this analysis. They were divided into six groups: normal control, ovalbumin (OVA) control, three PM2.

View Article and Find Full Text PDF

A Computational Fluid Dynamics Analysis of BiPAP Pressure Settings on Airway Biomechanics Using a CT-Based Respiratory Tract Model.

Respir Physiol Neurobiol

January 2025

School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia. Electronic address:

Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmHO, compared to a without-BiPAP scenario of zero-gauge pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!