Acacia gum solution was employed as a carrier for electrospray-assisted drying of probiotic cells. To optimize the process, effect of gum concentration, thermal sterilization as a prerequisite for microbial studies, and surfactant addition on physical properties of feed solution was investigated. Increasing gum concentration from 20 to 40 wt.% led to a viscosity increase, whilst surface tension did not change meaningfully and electrical conductivity declined after an increasing trend up to 30 wt.% of the gum. Thermal sterilization increased the viscosity without any significant effect on the conductivity and surface tension. Surfactant addition reduced the surface tension and conductivity but the viscosity increased. Highly uniform particles were formed by electrospray-assisted drying of autoclaved 35 wt.% acacia gum solution containing 1 wt.% Tween 80. Thermal sterilization and surfactant addition improved electrospray-ability of acacia gum solution. Bacterial count showed that more than 96 percent of probiotic cells passed the process viably.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2017.12.001 | DOI Listing |
Carbohydr Polym
March 2025
Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:
Foods
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Freshness indicator labels are crucial for food quality monitoring. However, existing labels often lack stability and sensitivity. This study aims to develop a safe freshness indicator label with high stability and sensitivity.
View Article and Find Full Text PDFRSC Adv
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China. Electronic address:
In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!